# Foundations of Advanced Mathematics (MEI) 

## Combined Mark Scheme And Report on the Unit

## January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

## CONTENTS

## Foundations of Advanced Mathematics FSMQ (6989)

## MARK SCHEME AND REPORT ON THE UNIT

| Unit | Content | Page |
| :--- | :--- | :--- |
| * | Chief Examiner Report | 3 |
| 6989 | Foundations of Advanced <br> Mathematics Mark Scheme | 5 |
| * | Grade Thresholds | 6 |

# Chief Examiner's Report FSMQ 6989 

There were 700 candidates this session. The mean was slightly down on previous years. There were 3 questions for which at least one candidate did not offer a response.
In every question each of the responses was offered by at least one candidate.
It is not the intention to "catch out" the candidates but rather to create alternative responses that might be chosen by a candidate making a typical mistake. A question that works well, therefore, is one in which the correct response is chosen by $60 \%-80 \%$ of candidates with an equal proportion of other candidates choosing the other responses. When this does not happen it may be that the alternative answers offered are too obviously incorrect (resulting in a very high proportion choosing the correct response) or that there is a widespread misunderstanding of the topic, or that the question is too hard (resulting in a low proportion choosing the correct response).

In this session for question 3, $90 \%$ chose the correct response. In this question on arithmetic the response C with the false answer may have been a little hard, but the other 3 responses were rather too obviously correct.

In this session there were 4 questions where a higher proportion of candidates chose the incorrect response than those choosing the correct response.

Question $2030 \%$ chose correctly response D and $31 \%$ chose response C.
In this question, on probability, the response C was the probability that the scores were first 6 and then 1 rather than one of each. This is a typical question where a standard error is made in the calculation leading to the decision that an incorrect response is in fact correct. It may well be that a candidate who decides that response $C$ gives the false answer will not check response $D$. A candidate who does check response D may well then decide that two of the answers are false and so alert him to an error which he may then be able to put right. The message here is that candidates should be encouraged to check all responses and not to stop when they find one that they believe to be the correct response. A comment was made in the June 2006 report that in all cases where more candidates offered the incorrect response than those offering the correct response, the incorrect response came before the correct response. This was not the case this time, and the fact that there were fewer such questions might indicate that note had been made of the comment.

Question $2730 \%$ chose correctly response B; $31 \%$ chose response C and $27 \%$ response A. It may be that in this question, on vectors, candidates were unfamiliar with the topic and the associated vocabulary.

Question $2937 \%$ chose correctly response A and $41 \%$ chose response C.
This was a straightforward question on algebra in which the units of money were muddled.
Question $34 \quad 19 \%$ correctly chose response C; $30 \%$ chose response A and $38 \%$ response B.
This was another probability question with the same topic of two events being either way round, this time with a finite population. Choosing one then the other is 0.244 ; choosing one of each but in either order is 0.489 . Correcting to 2 decimal places then gives 0.49 which was response $C$. Consequently it is reasonable to assume that once again candidates made the simple error of not doubling their answer, seeing their result as response A and not checking the other responses. Those choosing response B we must assume failed to correct their decimal answer correctly.

Two other questions came close to this situation.
Question $1838 \%$ chose correctly response D and $36 \%$ chose response A.

Question 40 28\% chose correctly response D; $25 \%$ chose response A, $21 \%$ response B and $26 \%$ response C.

As in previous reports, the following gives an analysis of candidates choosing the correct response for each question.

| Percentage | Question | Topic |
| :---: | :---: | :---: |
| 81-90 | 3 | Arithmetic |
|  | 5 | Statistics of a small data set |
|  | 6 | Arithmetic |
|  | 11 | Algebra - solution of equations |
|  | 12 | Arithmetic - ratio and proportion |
| 71-80 | 4 | Algebra - powers |
|  | 13 | Arithmetic - standard form |
|  | 14 | Algebra - expansion of brackets |
|  | 32 | Arithmetic - areas and lengths on maps |
|  | 36 | Algebra - quadratic sequence |
| 61-70 | 1 | Arithmetic - conversion of metric units |
|  | 2 | Arithmetic |
|  | 8 | Data display - pie charts |
|  | 19 | Algebra - factorisation of quadratic expressions |
|  | 22 | Algebra - inequalities |
|  | 24 | Statistics - cumulative frequency curve |
|  | 26 | Mensuration - surface areas and volumes of similar cuboids |
|  | 28 | Arithmetic - interpretation of ratio graphs |
|  | 39 | Arithmetic - distance/time graph |
| 51-60 | 7 | Algebra - substitution of values into expressions |
|  | 9 | Coordinate geometry - equations of straight lines |
|  | 10 | Arithmetic - reasonable units |
|  | 15 | Algebra - interpretation of graph |
|  | 16 | Vectors |
|  | 31 | Algebra - changing the subject of formulae |
|  | 33 | Algebra - solution of simultaneous equations |
| 41-50 | 17 | Trigonometry - sine and cosine rules |
|  | 21 | Arithmetic - upper and lower bounds |
|  | 23 | Algebra - solution of quadratic equations |
|  | 25 | Trigonometry - graphs of the circular functions |
|  | 35 | Arithmetic and trigonometry - mensuration of a cuboid |
|  | 37 | Algebra - interpretation of roots of cubic equations from graphs |
| 31-40 | 18 | Coordinate geometry - Pythagoras |
|  | 29 | Algebra - creation of expressions |
|  | 30 | Trigonometry - sine and cosine rules |
|  | 38 | Algebra - simplification of expression involving algebraic fractions |
| 21-30 | 20 | Probability |
|  | 27 | Vectors |
|  | 40 | Algebra - volume of compound solid |
| 11-20 | 34 | Probability |


| Answers |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | A | 21 | C |
| 2 | C | 22 | B |
| 3 | C | 23 | A |
| 4 | D | 24 | A |
| 5 | C | 25 | D |
| 6 | D | 26 | C |
| 7 | B | 27 | B |
| 8 | D | 28 | A |
| 9 | C | 29 | A |
| 10 | A | 30 | C |
| 11 | C | 31 | B |
| 12 | D | 32 | B |
| 13 | C | 33 | A |
| 14 | B | 34 | C |
| 15 | B | 35 | D |
| 16 | B | 36 | C |
| 17 | A | 37 | C |
| 18 | D | 38 | B |
| 19 | A | 39 | A |
| 20 | D | 40 | D |

## FSMQ Intermediate Foundations of Advanced Mathematics(FAM)

January 2007 Assessment Series

## Unit Threshold Marks

| Unit | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{6 9 8 9}$ | 40 | 30 | 26 | 22 | 18 | 15 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | U | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{6 9 8 9}$ | 18.1 | 37.0 | 58.0 | 76.9 | 88.4 | 100 | 700 |

Statistics are correct at the time of publication

# OCR (Oxford Cambridge and RSA Examinations) <br> 1 Hills Road <br> Cambridge <br> CB1 2EU 

## OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

